第一,沒有銀彈——破除對“終極算法”的迷信
深度學習落入了“尋找銀彈”(銀彈在歐洲民間傳說中是吸血鬼和狼人克星,引申義為致命武器、殺手锏)的陷阱,用充滿“殘差項”和“損失函數(shù)”等術(shù)語的全新數(shù)學方法來分析世界,依然局限于“獎勵最大化”的角度,而不去思考,若想獲得對世界的“深度理解”,整個體系中還需要引入哪些東西。
神經(jīng)科學告訴我們大腦是極為復雜的。真正擁有智慧和復雜性的系統(tǒng),很有可能像大腦一樣充滿復雜性。任何一個提出將智慧凝練成為單一原則的理論,或是簡化成為單一“終極算法”的理論,都將誤入歧途。
第二,認知大量利用內(nèi)部表征——人類的認知不是從出生后的學習才開始,而是依賴于進化留下的先天表征
從嚴格的技術(shù)意義上講,神經(jīng)網(wǎng)絡也具有表征,比如表示輸入、輸出和隱藏單元的向量,但幾乎完全不具備更加豐富的內(nèi)容。在經(jīng)典人工智能中,知識完全是由這類表征的積累所組成的,而推理則是建立在此基礎之上的。如果事實本身模糊不清,得到正確的推理就會難于上青天。外顯表征的缺失,也在DeepMind的雅達利游戲系統(tǒng)中造成了類似的問題。DeepMind的雅達利游戲系統(tǒng)之所以在《打磚塊》這類游戲的場景發(fā)生稍許變化時便會崩潰,原因就在于它實際上根本不表征擋板、球和墻壁等抽象概念。
沒有這樣的表征,就不可能有認知模型。沒有豐富的認知模型,就不可能有魯棒性。你所能擁有的只是大量的數(shù)據(jù),然后指望著新事物不會與之前的事物有太大的出入。當這個希望破滅時,整個體系便崩潰了。
在為復雜問題構(gòu)建有效系統(tǒng)時,豐富的表征通常是必不可少的。DeepMind在開發(fā)以人類(或超人)水平下圍棋的AlphaGo系統(tǒng)時,就放棄了先前雅達利游戲系統(tǒng)所采用的“僅從像素學習”的方法,以圍棋棋盤和圍棋規(guī)則的詳細表征為起步,一直用手工的機制來尋找走棋策略的樹形圖和各種對抗手段。
第三,抽象和概括在認知中發(fā)揮著至關(guān)重要的作用
我們的認知大部分是相當抽象的。例如,“X是Y的姐妹”可用來形容許多不同的人之間的關(guān)系:瑪利亞·奧巴馬是薩沙·奧巴馬的姐妹,安妮公主是查爾斯王子的姐妹,等等。我們不僅知道哪些具體的人是姐妹,還知道姐妹的一般意義,并能把這種知識用在個體身上。比如,我們知道,如果兩個人有相同的父母,他們就是兄弟姐妹的關(guān)系。如果我們知道勞拉·英格斯·懷德是查爾斯·英格斯和卡羅琳·英格斯的女兒,還發(fā)現(xiàn)瑪麗·英格斯也是他們的女兒,那么我們就可以推斷,瑪麗和勞拉是姐妹,我們也可以推斷:瑪麗和勞拉很可能非常熟識,因為絕大多數(shù)人都和他們的兄弟姐妹一起生活過;兩人之間還可能有些相像,還有一些共同的基因特征;等等。
認知模型和常識的基礎表征都建立在這些抽象關(guān)系的豐富集合之上,以復雜的結(jié)構(gòu)組合在一起。人類可以對任何東西進行抽象,時間(“晚上10:35”)、空間(“北極”)、特殊事件(“亞伯拉罕·林肯被暗殺”)、社會政治組織(“美國國務院”“暗網(wǎng)”)、特征(“美”“疲勞”)、關(guān)系(“姐妹”“棋局上擊敗”)、理論(“馬克思主義”)、理論構(gòu)造(“重力”“語法”)等,并將這些東西用在句子、解釋、比較或故事敘述之中,對極其復雜的情況剝絲抽繭,得到最基礎的要素,從而令人類心智獲得對世界進行一般性推理的能力。
第四,認知系統(tǒng)是高度結(jié)構(gòu)化的
我們可以預期,真正的人工智能很可能也是高度結(jié)構(gòu)化的,在應對給定的認知挑戰(zhàn)時,其大部分能力也將源自在正確的時間以正確的方式對這種結(jié)構(gòu)進行利用。具有諷刺意味的是,當前的趨勢與這樣的愿景幾乎完全相反,F(xiàn)在的機器學習界偏向于利用盡可能少的內(nèi)部結(jié)構(gòu)形成單一同質(zhì)機制的端到端模型。
在某種程度上,這樣的系統(tǒng)從概念上來看更簡單,用不著為感知、預測等分別設計單獨的算法。而且,初看起來,該模型大體上效果還算理想,有一部令人印象深刻的視頻似乎也證明了這一點。那么,既然用一個龐大的網(wǎng)絡和正確的訓練集就能簡單易行地達到目標,為什么還要將感知、決策和預測視為其中的獨立模塊,然后費心費力地建立混合系統(tǒng)呢?
問題就在于,這樣的系統(tǒng)幾乎不具備所需的靈活性。
在關(guān)鍵的應用場景中,最優(yōu)秀的AI研究人員致力于解決復雜問題時,常常會使用混合系統(tǒng),我們預期,這樣的情況在未來會越來越多。AI和大腦一樣,必須要有結(jié)構(gòu),利用不同的工具來解決復雜問題的不同方面。
第五,即便是看似簡單的認知,有時也需要多種工具
大腦也利用幾種不同的模式來處理概念,利用定義,利用典型特征,或利用關(guān)鍵示例。我們經(jīng)常會同時關(guān)注某個類別的特征是什么,以及為了令其滿足某種形式的標準,必須符合什么條件。
AI面臨的一個關(guān)鍵挑戰(zhàn),就是在捕捉抽象事實的機制(絕大多數(shù)哺乳動物是胎生)和處理這個世界不可避免的異常情況的機制(鴨嘴獸這種哺乳動物會產(chǎn)卵)之間,尋求相對的平衡。通用人工智能既需要能識別圖像的深度學習機制,也需要能進行推理和概括的機制,這種機制更接近于經(jīng)典人工智能的機制以及規(guī)則和抽象的世界。
要獲得適用范圍更廣的AI,我們必須將許多不同的工具組織在一起,有些是老舊的,有些是嶄新的,還有一些是我們尚未發(fā)現(xiàn)的。
第六,人類思想和語言是由成分組成的
在喬姆斯基看來,語言的本質(zhì),用更早期的一位語言學家威廉·馮·洪堡(Wilhelm von Humboldt)的話來說,就是“有限方法的無限使用”。借有限的大腦和有限的語言數(shù)據(jù),我們創(chuàng)造出了一種語法,能讓我們說出并理解無限的句子,在許多情況下,我們可以用更小的成分構(gòu)造出更大的句子,比如用單詞和短語組成上面這句話。如果我們說,“水手愛上了那個女孩”,那么我們就可以將這句話作為組成要素,用在更大的句子之中,“瑪麗亞想象水手愛上了那個女孩”,而這個更大的句子還可以作為組成要素,用在還要大的句子之中“克里斯寫了一篇關(guān)于瑪麗亞想象水手愛上了那個女孩的文章”,以這樣的方式接著類推,每一句話我們都可以輕松理解。
神經(jīng)網(wǎng)絡先驅(qū)學者杰弗里·欣頓一直在為他提出的“思維向量”而發(fā)聲。在深度學習中,每個輸入和輸出都可以被描述為一個向量,網(wǎng)絡中的每個“神經(jīng)元”都為相關(guān)向量貢獻一個數(shù)字。由此,許多年以來,機器學習領(lǐng)域的研究人員一直試圖將單詞以向量的形式進行編碼,認為任何兩個在意義上相似的單詞都應該使用相似的向量編碼。
類似的技術(shù)被谷歌所采用,并體現(xiàn)在了谷歌最近在機器翻譯方面取得的進展之中。那么,為什么不以這種方式來表征所有的思想呢?
因為句子和單詞不同。我們不能通過單詞在各類情況下的用法來推測其意思。例如貓的意思,至少與我們聽說過的所有“貓”的用法的平均情況有些許相似,或(從技術(shù)角度講)像是深度學習系統(tǒng)用于表征的矢量空間中的一堆點。但每一個句子都是不同的:John is easy to please(約翰很好哄)和John is eager to please(約翰迫不及待的想要取悅別人)并不是完全相似的,雖然兩句話中的字母乍看去并沒有多大區(qū)別。John is easy to please和John is not easy to please的意思則完全不同。在句子中多加一個單詞,就能將句子的整個意思全部改變。深度學習在沒有高度結(jié)構(gòu)化句子表征的情況下工作,往往會在處理細微差別時遇到問題。
這個例子告訴我們:統(tǒng)計數(shù)字經(jīng)常能近似地表示意義,但永遠不可能抓住真正的意思。如果不能精準地捕捉單個單詞的意義,就更不能準確地捕捉復雜的思想或描述它們的句子。
第七,對世界的魯棒理解,既需要自上向下的知識,也需要自下而上的信息
看一看這幅圖片。這是個字母,還是個數(shù)字?
很明顯,這幅圖片既可以是字母,也可以是數(shù)字,具體取決于它所在的上下文。
認知心理學家將知識分為兩類:自下而上的信息,是直接來自我們感官的信息;還有自上而下的知識,是我們對世界的先驗知識,例如,字母和數(shù)字是兩個不同的類別,單詞和數(shù)字是由來自這些類別之中的元素所組成的,等等。這種模棱兩可的B/13圖像,在不同的上下文中會呈現(xiàn)出不同的面貌,因為我們會嘗試著將落在視網(wǎng)膜上的光線與合乎邏輯的世界相結(jié)合。
找到一種方法將自下而上和自上而下兩者整合為一體,是人工智能的當務之急,卻常常被人忽視。
人類對任何一個概念的認知,都取決于概念出現(xiàn)的上下文和其所屬的理論框架。識別出不同的應用場景,不僅可以顯著減少所需數(shù)據(jù),還能夠讓AI變得更加可信任。如果AI可以區(qū)分畫中的一把刀和真實場景下的刀,就可以做出不同的反應。
同時,人類會對每個事物和人的個體分別進行持續(xù)的觀察和跟蹤,以此來將不同時間點的數(shù)據(jù)進行統(tǒng)一的分析。這也是AI需要向人類學習的方式。
第八,概念嵌于理論之中
嵌入在理論中的概念對有效學習至關(guān)重要。假設一位學齡前兒童第一次看到鬣蜥的照片。從此之后,孩子們就能認出其他照片上的、視頻中的和現(xiàn)實生活中的鬣蜥,而且準確率相當高,很容易就能將鬣蜥與袋鼠甚至其他蜥蜴區(qū)分開來。同樣,孩子能夠從關(guān)于動物的一般知識中推斷出,鬣蜥會吃東西,會呼吸,它們生下來很小,會長大,繁殖,然后死去,并意識到可能有一群鬣蜥,它們看起來或多或少都有些相似,行為方式也相似。
沒有哪個事實是一座孤島。通用人工智能若想獲得成功,就需要將獲取到的事實嵌入到更加豐富的、能幫助將這些事實組織起來的高層級理論之中。
第九,因果關(guān)系是理解世界的基礎
深度學習能否成功,在嘗試之前是無法確證的,AlphaGo的設計者在設計之初也不確定能否取得如今的成績,畢竟深度學習能夠找到的規(guī)律只是相關(guān)性,而非因果性。
圍棋的棋盤形式和游戲規(guī)則構(gòu)成了一個相對簡單的因果模型,只有勝負的結(jié)果和單一的時間顆粒度,影響勝負的因素只有自己如何下棋。因此,和贏棋相關(guān)的走法,就等同于導致AI更強的算法改進。
但現(xiàn)實中,尤其是在2B的應用場景下,AI需要在多維度和長時間尺度下,做出同時滿足多種評價標準的決策,此時相關(guān)性就不等同于因果性。
第十,我們針對逐個的人和事件進行跟進
你的另一半以前當過記者,喜歡喝白蘭地,不那么喜歡威士忌。你的女兒以前特別害怕暴風雨,喜歡吃冰激凌,沒那么喜歡吃曲奇餅。你車子的右后門被撞了個小坑,一年前你更換了車子的變速器。街角那家小商店,以前賣的東西質(zhì)量特別好,后來轉(zhuǎn)手給新老板之后,東西的質(zhì)量就一天不如一天。我們對世界的體驗,是由許多持續(xù)存在、不斷變化的個體組成的,而我們的許多知識,也是圍繞著這些個體事物而建立起來的。不僅包括汽車、人物和商店,還包括特定的實體,及其特定的歷史和特征。
奇怪的是,這并非深度學習與生俱來的觀點。深度學習以類別為重點,而不以個體為重點。通常情況下,深度學習善于歸納和概括:孩子都喜歡吃甜食,不那么喜歡吃蔬菜,汽車有四個輪子。這些事實,是深度學習系統(tǒng)善于發(fā)現(xiàn)和總結(jié)的,而對關(guān)于你的女兒和你的車子的特定事實,則沒什么感覺。
第十一,復雜的認知生物體并非白板一塊
人工智能要獲得真正的進步,首先要搞清楚應該內(nèi)置何種知識和表征,并以此為起點來啟動其他的能力。
我們整個行業(yè),都需要學習如何利用對實體對象的核心理解來進一步了解世界,在此基礎之上構(gòu)建起系統(tǒng),而不是單純憑借像素和行為之間的相關(guān)性來學習一切,以此為系統(tǒng)的核心。我們所謂的“常識”,大部分是后天習得的,比如錢包是用來裝錢的、奶酪可以打成碎屑,但幾乎所有這些常識,都始于對時間、空間和因果關(guān)系的確定感知。所有這一切的基礎,可能就是表征抽象、組合性,以及持續(xù)存在一段時間(可以是幾分鐘,也可以是數(shù)十年)的對象和人等個體實體的屬性的內(nèi)在機制。如果機器想要學習尚無法掌握的東西,那么從一開始就需要擁有這樣的基礎。
商用機器人 Disinfection Robot 展廳機器人 智能垃圾站 輪式機器人底盤 迎賓機器人 移動機器人底盤 講解機器人 紫外線消毒機器人 大屏機器人 霧化消毒機器人 服務機器人底盤 智能送餐機器人 霧化消毒機 機器人OEM代工廠 消毒機器人排名 智能配送機器人 圖書館機器人 導引機器人 移動消毒機器人 導診機器人 迎賓接待機器人 前臺機器人 導覽機器人 酒店送物機器人 云跡科技潤機器人 云跡酒店機器人 智能導診機器人 |