大型商用時序數(shù)據(jù)壓縮的特性,提出了一種新的算法,分享用深度強化學習進行數(shù)據(jù)壓縮的研究探索
滴滴機器學習場景下的 k8s 落地實踐與二次開發(fā)的技術(shù)實踐與經(jīng)驗,包括平臺穩(wěn)定性、易用性、利用率、平臺 k8s 版本升級與二次開發(fā)等內(nèi)容
機器學習就是通過經(jīng)驗來尋找它學習的模式,而人工智能是利用經(jīng)驗來獲取知識和技能,并將這些知識應(yīng)用于新的環(huán)境
神經(jīng)形態(tài)結(jié)構(gòu)融合學習和記憶功能領(lǐng)域的研究主要集中在人工突觸的可塑性方面,同時神經(jīng)元膜的固有可塑性在神經(jīng)形態(tài)信息處理的實現(xiàn)中也很重要
針對結(jié)算收銀場景中商品識別的難點,從商品識別落地中的模型選擇、數(shù)據(jù)挑選與標注、前端和云端部署、模型改進等方面,進行了深入講解
通過分析其中的關(guān)鍵問題,建立了新熱內(nèi)容曝光敏感模型,并最終給出一種曝光資源約束下的多目標優(yōu)化保量框架與算法
優(yōu)酷推薦業(yè)務(wù),算法應(yīng)用場景眾多,需求靈活多變,需要一套通用業(yè)務(wù)框架,支持運行時的算法流程的裝配,提升算法服務(wù)場景搭建的效率
餓了么算法專家劉金介紹推薦業(yè)務(wù)背景,包括推薦產(chǎn)品形態(tài)及算法優(yōu)化目標;然后是算法的演進路線;最后重點介紹在線學習是如何在餓了么推薦領(lǐng)域?qū)嵺`的
杜克大學的一種 AI 算法PULSE可以將模糊、無法識別的人臉圖像轉(zhuǎn)換成計算機生成的圖像,其細節(jié)比之前任何時候都更加精細、逼真
能快速將現(xiàn)有算法在實際生產(chǎn)環(huán)境落地,并能利用GPU加速實現(xiàn)大規(guī)模計算,我們自己搭建了一個GPU加速的大規(guī)模分布式機器學習系統(tǒng),取名小諸葛
人類可以通過視覺和觸覺融合感知快速確定抓取可變形物體所需力的大小,以防止其發(fā)生滑動或過度形變,但這對于機器人來說仍然是一個具有挑戰(zhàn)性的問題
在底層通過使用基于模型的操作單元,保證了手指與物體之間持續(xù)穩(wěn)定的抓;在中層使用強化學習進行規(guī)劃,從而實現(xiàn)較長和復(fù)雜的手內(nèi)操作流程